Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I have tried to puzzle out an answer to this question for many months while learning pandas.

(在学习熊猫的过程中,我试图解决这个问题的答案已经有很多月了。)

I use SAS for my day-to-day work and it is great for it's out-of-core support.

(我在日常工作中使用SAS,这非常有用,因为它提供了核心支持。)

However, SAS is horrible as a piece of software for numerous other reasons.

(但是,由于许多其他原因,SAS作为一个软件也是很糟糕的。)

One day I hope to replace my use of SAS with python and pandas, but I currently lack an out-of-core workflow for large datasets.

(有一天,我希望用python和pandas取代我对SAS的使用,但是我目前缺少大型数据集的核心工作流程。)

I'm not talking about "big data" that requires a distributed network, but rather files too large to fit in memory but small enough to fit on a hard-drive.

(我并不是在说需要分布式网络的“大数据”,而是文件太大而无法容纳在内存中,但文件又足够小而无法容纳在硬盘上。)

My first thought is to use HDFStore to hold large datasets on disk and pull only the pieces I need into dataframes for analysis.

(我的第一个想法是使用HDFStore将大型数据集保存在磁盘上,然后仅将我需要的部分拉入数据帧中进行分析。)

Others have mentioned MongoDB as an easier to use alternative.

(其他人则提到MongoDB是一种更易于使用的替代方案。)

My question is this:

(我的问题是这样的:)

What are some best-practice workflows for accomplishing the following:

(什么是实现以下目标的最佳实践工作流:)

  1. Loading flat files into a permanent, on-disk database structure

    (将平面文件加载到永久的磁盘数据库结构中)

  2. Querying that database to retrieve data to feed into a pandas data structure

    (查询该数据库以检索要输入到熊猫数据结构中的数据)

  3. Updating the database after manipulating pieces in pandas

    (处理熊猫中的片段后更新数据库)

Real-world examples would be much appreciated, especially from anyone who uses pandas on "large data".

(现实世界中的示例将不胜感激,尤其是那些使用“大数据”中的熊猫的人。)

Edit -- an example of how I would like this to work:

(编辑-我希望如何工作的示例:)

  1. Iteratively import a large flat-file and store it in a permanent, on-disk database structure.

    (迭代导入一个大型平面文件,并将其存储在永久的磁盘数据库结构中。)

    These files are typically too large to fit in memory.

    (这些文件通常太大而无法容纳在内存中。)

  2. In order to use Pandas, I would like to read subsets of this data (usually just a few columns at a time) that can fit in memory.

    (为了使用Pandas,我想读取这些数据的子集(通常一次只读取几列),使其适合内存。)

  3. I would create new columns by performing various operations on the selected columns.

    (我将通过对所选列执行各种操作来创建新列。)

  4. I would then have to append these new columns into the database structure.

    (然后,我将不得不将这些新列添加到数据库结构中。)

I am trying to find a best-practice way of performing these steps.

(我正在尝试找到执行这些步骤的最佳实践方法。)

Reading links about pandas and pytables it seems that appending a new column could be a problem.

(阅读有关熊猫和pytables的链接,似乎添加一个新列可能是个问题。)

Edit -- Responding to Jeff's questions specifically:

(编辑-专门回答杰夫的问题:)

  1. I am building consumer credit risk models.

    (我正在建立消费者信用风险模型。)

    The kinds of data include phone, SSN and address characteristics;

    (数据类型包括电话,SSN和地址特征;)

    property values;

    (财产价值;)

    derogatory information like criminal records, bankruptcies, etc... The datasets I use every day have nearly 1,000 to 2,000 fields on average of mixed data types: continuous, nominal and ordinal variables of both numeric and character data.

    (诸如犯罪记录,破产等之类的贬义信息。我每天使用的数据集平均有近1,000到2,000个混合数据类型的字段:数字和字符数据的连续,名义和有序变量。)

    I rarely append rows, but I do perform many operations that create new columns.

    (我很少追加行,但是我确实执行了许多创建新列的操作。)

  2. Typical operations involve combining several columns using conditional logic into a new, compound column.

    (典型的操作涉及使用条件逻辑将几个列合并到一个新的复合列中。)

    For example, if var1 > 2 then newvar = 'A' elif var2 = 4 then newvar = 'B' .

    (例如, if var1 > 2 then newvar = 'A' elif var2 = 4 then newvar = 'B'if var1 > 2 then newvar = 'A' elif var2 = 4 then newvar = 'B' 。)

    The result of these operations is a new column for every record in my dataset.

    (这些操作的结果是数据集中每个记录的新列。)

  3. Finally, I would like to append these new columns into the on-disk data structure.

    (最后,我想将这些新列添加到磁盘数据结构中。)

    I would repeat step 2, exploring the data with crosstabs and descriptive statistics trying to find interesting, intuitive relationships to model.

    (我将重复步骤2,使用交叉表和描述性统计数据探索数据,以寻找有趣的直观关系进行建模。)

  4. A typical project file is usually about 1GB.

    (一个典型的项目文件通常约为1GB。)

    Files are organized into such a manner where a row consists of a record of consumer data.

    (文件组织成这样的方式,其中一行包含消费者数据记录。)

    Each row has the same number of columns for every record.

    (每条记录的每一行都有相同的列数。)

    This will always be the case.

    (情况总是如此。)

  5. It's pretty rare that I would subset by rows when creating a new column.

    (创建新列时,我会按行进行子集化是非常罕见的。)

    However, it's pretty common for me to subset on rows when creating reports or generating descriptive statistics.

    (但是,在创建报告或生成描述性统计信息时,对行进行子集化是很常见的。)

    For example, I might want to create a simple frequency for a specific line of business, say Retail credit cards.

    (例如,我可能想为特定业务创建一个简单的频率,例如零售信用卡。)

    To do this, I would select only those records where the line of business = retail in addition to whichever columns I want to report on.

    (为此,除了我要报告的任何列之外,我将只选择那些业务线=零售的记录。)

    When creating new columns, however, I would pull all rows of data and only the columns I need for the operations.

    (但是,在创建新列时,我将拉出所有数据行,而仅提取操作所需的列。)

  6. The modeling process requires that I analyze every column, look for interesting relationships with some outcome variable, and create new compound columns that describe those relationships.

    (建模过程要求我分析每一列,寻找与某些结果变量有关的有趣关系,并创建描述这些关系的新复合列。)

    The columns that I explore are usually done in small sets.

    (我探索的列通常以小集合形式完成。)

    For example, I will focus on a set of say 20 columns just dealing with property values and observe how they relate to defaulting on a loan.

    (例如,我将重点介绍一组仅涉及属性值的20个列,并观察它们与贷款违约的关系。)

    Once those are explored and new columns are created, I then move on to another group of columns, say college education, and repeat the process.

    (在探索了这些列并创建了新的列之后,我接着转到另一组列,例如大学学历,然后重复该过程。)

    What I'm doing is creating candidate variables that explain the relationship between my data and some outcome.

    (我正在做的是创建候选变量,这些变量解释我的数据和某些结果之间的关系。)

    At the very end of this process, I apply some learning techniques that create an equation out of those compound columns.

    (在此过程的最后,我应用了一些学习技术,这些技术可以根据这些复合列创建方程。)

It is rare that I would ever add rows to the dataset.

(我很少向数据集添加行。)

I will nearly always be creating new columns (variables or features in statistics/machine learning parlance).

(我几乎总是会创建新列(统计/机器学习术语中的变量或功能)。)

  ask by Zelazny7 translate from so

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
275 views
Welcome To Ask or Share your Answers For Others

1 Answer

I routinely use tens of gigabytes of data in just this fashion eg I have tables on disk that I read via queries, create data and append back.

(我通常以这种方式使用数十GB的数据,例如,我在磁盘上有一些表,这些表是通过查询读取,创建数据并追加回去的。)

It's worth reading the docs and late in this thread for several suggestions for how to store your data.

(值得阅读文档以及该线程的后期内容,以获取有关如何存储数据的一些建议。)

Details which will affect how you store your data, like:

(将影响您存储数据方式的详细信息,例如:)
Give as much detail as you can;

(尽可能多地提供细节;)

and I can help you develop a structure.

(我可以帮助您建立结构。)

  1. Size of data, # of rows, columns, types of columns;

    (数据大小,行数,列数,列类型;)

    are you appending rows, or just columns?

    (您要追加行还是仅追加列?)

  2. What will typical operations look like.

    (典型的操作将是什么样的。)

    Eg do a query on columns to select a bunch of rows and specific columns, then do an operation (in-memory), create new columns, save these.

    (例如,对列进行查询以选择一堆行和特定的列,然后执行一项操作(在内存中),创建新列并保存。)
    (Giving a toy example could enable us to offer more specific recommendations.)

    ((提供一个玩具示例可以使我们提供更具体的建议。))

  3. After that processing, then what do you do?

    (处理完之后,您该怎么办?)

    Is step 2 ad hoc, or repeatable?

    (步骤2是临时的还是可重复的?)

  4. Input flat files: how many, rough total size in Gb.

    (输入平面文件:大约总大小(以Gb为单位)。)

    How are these organized eg by records?

    (这些是如何组织的,例如通过记录?)

    Does each one contains different fields, or do they have some records per file with all of the fields in each file?

    (每个文件都包含不同的字段,还是每个文件都有一些记录,每个文件中都有所有字段?)

  5. Do you ever select subsets of rows (records) based on criteria (eg select the rows with field A > 5)?

    (您是否曾经根据条件选择行(记录)的子集(例如,选择字段A> 5的行)?)

    and then do something, or do you just select fields A, B, C with all of the records (and then do something)?

    (然后执行某些操作,还是只选择带有所有记录的A,B,C字段(然后执行某些操作)?)

  6. Do you 'work on' all of your columns (in groups), or are there a good proportion that you may only use for reports (eg you want to keep the data around, but don't need to pull in that column explicity until final results time)?

    (您是否“工作”所有列(成组),还是只用于报告的比例很高(例如,您想保留数据,但无需明确地拉入该列,直到最终结果时间)?)

Solution (解)

Ensure you have pandas at least 0.10.1 installed.

(确保已安装至少0.10.1熊猫)

Read iterating files chunk-by-chunk and multiple table queries .

(逐块读取迭代文件多个表查询 。)

Since pytables is optimized to operate on row-wise (which is what you query on), we will create a table for each group of fields.

(由于pytables已优化为可按行操作(这是您要查询的内容),因此我们将为每组字段创建一个表。)

This way it's easy to select a small group of fields (which will work with a big table, but it's more efficient to do it this way... I think I may be able to fix this limitation in the future... this is more intuitive anyhow):

(这样一来,很容易选择一小组字段(它将与一个大表一起使用,但是这样做更有效。我想我将来可能会解决此限制。这是更加直观):)
(The following is pseudocode.)

((以下是伪代码。))

import numpy as np
import pandas as pd

# create a store
store = pd.HDFStore('mystore.h5')

# this is the key to your storage:
#    this maps your fields to a specific group, and defines 
#    what you want to have as data_columns.
#    you might want to create a nice class wrapping this
#    (as you will want to have this map and its inversion)  
group_map = dict(
    A = dict(fields = ['field_1','field_2',.....], dc = ['field_1',....,'field_5']),
    B = dict(fields = ['field_10',......        ], dc = ['field_10']),
    .....
    REPORTING_ONLY = dict(fields = ['field_1000','field_1001',...], dc = []),

)

group_map_inverted = dict()
for g, v in group_map.items():
    group_map_inverted.update(dict([ (f,g) for f in v['fields'] ]))

Reading in the files and creating the storage (essentially doing what append_to_multiple does):

(读入文件并创建存储(基本上是执行append_to_multiple操作):)

for f in files:
   # read in the file, additional options hmay be necessary here
   # the chunksize is not strictly necessary, you may be able to slurp each 
   # file into memory in which case just eliminate this part of the loop 
   # (you can also change chunksize if necessary)
   for chunk in pd.read_table(f, chunksize=50000):
       # we are going to append to each table by group
       # we are not going to create indexes at this time
       # but we *ARE* going to create (some) data_columns

       # figure out the field groupings
       for g, v in group_map.items():
             # create the frame for this group
             frame = chunk.reindex(columns = v['fields'], copy = False)    

             # append it
             store.append(g, frame, index=False, data_columns = v['dc'])

Now you have all of the tables in the file (actually you could store them in separate files if you wish, you would prob have to add the filename to the group_map, but probably this isn't necessary).

(现在,您已将所有表存储在文件中(实际上,您可以根据需要将它们存储在单独的文件中,您可能需要将文件名添加到group_map中,但这可能不是必需的)。)

This is how you get columns and create new ones:

(这是获取列并创建新列的方式:)

frame = store.select(group_that_I_want)
# you can optionally specify:
# columns = a list of the columns IN THAT GROUP (if you wanted to
#     select only say 3 out of the 20 columns in this sub-table)
# and a where clause if you want a subset of the rows

# do calculations on this frame
new_frame = cool_function_on_frame(frame)

# to 'add columns', create a new group (you probably want to
# limit the columns in this new_group to be only NEW ones
# (e.g. so you don't overlap from the other tables)
# add this info to the group_map
store.append(new_group, new_frame.reindex(columns = new_columns_created, copy = False), data_columns = new_columns_created)

When you are ready for post_processing:

(准备进行后期处理时:)

# This may be a bit tricky; and depends what you are actually doing.
# I may need to modify this function to be a bit more general:
report_data = store.select_as_multiple([groups_1,groups_2,.....], where =['field_1>0', 'field_1000=foo'], selector = group_1)

About data_columns, you don't actually need to define ANY data_columns;

(关于data_columns,您实际上不需要定义任何 data_columns。)

they allow you to sub-select rows based on the column.

(它们使您可以根据列来子选择行。)

Eg something like:

(例如:)

store.select(group, where = ['field_1000=foo', 'field_1001>0'])

They may be most interesting to you in the final report generation stage (essentially a data column is segregated from other columns, which might impact efficiency somewhat if you define a lot).

(在最后的报告生成阶段,它们可能对您来说最有趣(实际上,数据列与其他列是分开的,如果定义太多,这可能会在一定程度上影响效率)。)

You also might want to:

(您可能还想:)

  • create a function which takes a list of fields, looks up the groups in the groups_map, then selects these and concatenates the results so you get the resulting frame (this is essentially what select_as_multiple does).

    (创建一个使用字段列表的函数,在groups_map中查找组,然后选择它们并连接结果,以便获得结果框架(本质上就是select_as_multiple所做的事情)。)

    This way the structure would be pretty transparent to you.

    (这样,结构对您将非常透明。)

  • indexes on certain data columns (makes row-subsetting much faster).

    (在某些数据列上建立索引(使行子设置更快)。)

  • enable compression.

    (启用压缩。)

Let me know when you have questions!

(如有疑问,请告诉我!)


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...