Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

When trying to load data from JDBC(Oracle) into Spark, there seems to be precision loss in the decimal field, as per my understanding Spark supports DECIMAL(38,18) .

(当尝试将数据从JDBC(Oracle)加载到Spark中时,根据我的理解,Spark支持DECIMAL(38,18) ,因此在十进制字段中似乎存在精度损失。)

The field from the Oracle is DECIMAL(15,14), whereas Spark rounds off the last four digits making it a precision of DECIMAL(15,10).

(Oracle的字段为DECIMAL(15,14),而Spark舍入最后四位数字,使其精度为DECIMAL(15,10)。)

This is happening to only one field in the dataframe whereas in the same query another field populates the right schema.

(这仅发生在数据框中的一个字段,而在同一查询中,另一个字段填充了正确的模式。)

Tried to pass the spark.sql.decimalOperations.allowPrecisionLoss=false conf in the Spark-submit though didn't get the desired results.

(试图在Spark提交中传递spark.sql.decimalOperations.allowPrecisionLoss=false conf,尽管没有获得期望的结果。)

jdbcDF = spark.read 
    .format("jdbc") 
    .option("url", "ORACLE") 
    .option("dbtable", "QUERY") 
    .option("user", "USERNAME") 
    .option("password", "PASSWORD") 
    .load()

So considering that the Spark infers the schema from a sample records, how does this work here?

(因此,考虑到Spark从样本记录中推断出架构,这在这里如何工作?)

Does it use the results of the query ie (SELECT * FROM TABLE_NAME JOIN ...) or does it take a different route to guess the schema for itself?

(它是否使用查询结果,即(SELECT * FROM TABLE_NAME JOIN ...),还是采用不同的路径来猜测其自身的模式?)

Can someone throw some light on this and advise how to achieve the right decimal precision on this regards without manipulating the query as doing a CAST on the query does solve the issue, but would prefer to get some alternatives.

(有人可以对此进行一些说明,并建议如何在不处理查询的情况下就此方面实现正确的小数精度吗,因为对查询执行CAST确实可以解决问题,但还是希望找到其他选择。)

  ask by Joby translate from so

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
386 views
Welcome To Ask or Share your Answers For Others

1 Answer

等待大神答复

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...