I just tried to solve one of the DAE problems from Schittkowski DAE test suite (http://klaus-schittkowski.de/mc_dae.htm) but no success (Python 3.7).
m=GEKKO(remote=False)
m.time = np.linspace(0.0,100.0,100)
m1 = m.Param(value=1.0)
g = m.Param(value=9.81)
s = m.Param(value=1.0)
m.options.IMODE=4
m.options.NODES=3
#m.options.RTOL=1e-3
#Initial values t=0
x = m.Var(value=0.0)
y = m.Var(value=-s)
v = m.Var(value=1.0)
w = m.Var(value=0.0)
l = m.Var(value=(m1*(1.0+s*g)/2.0/s**2))
m.Equation(x.dt() == v)
m.Equation(y.dt() == w)
m.Equation(m1*v.dt() == -2*x*l)
m.Equation(m1*w.dt() == -m1*g - 2*y*l)
m.Equation(x*v == -y*w)
m.solve(disp=False)
plt.plot(m.time,x)
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-7-a059f1ac5393> in <module>
23 m.Equation(x*v == -y*w)
24
---> 25 m.solve(disp=False)
26 plt.plot(m.time,x)
C:WPy64-3771python-3.7.7.amd64libsite-packagesgekkogekko.py in solve(self, disp, debug, GUI, **kwargs)
2172 #print APM error message and die
2173 if (debug >= 1) and ('@error' in response):
-> 2174 raise Exception(response)
2175
2176 #load results
Exception: @error: Solution Not Found
I just tried to increase number of points in m.time and number of nodes in m.options.NODES=3. Changing m.options.RTOL does not help as well.
Folllowing the suggestions about resolving the problem of not finding the solution, I managed to get one. Here is the code.
m=GEKKO(remote=False)
m.time = np.linspace(0.0,100.0,500)
m1 = m.Param(value=1.0)
g = m.Param(value=9.81)
s = m.Param(value=1.0)
m.options.IMODE=4
m.options.NODES=7
#Initial values t=0
x = m.Var(value=0.0)
y = m.Var(value=-1.0)
v = m.Var(value=1.0)
w = m.Var(value=0.0)
l = m.Var(value=4.405)
m.Equation(x.dt() == v)
m.Equation(y.dt() == w)
m.Equation(m1*v.dt() == -2*x*l)
m.Equation(m1*w.dt() == -m1*g - 2*y*l)
m.Equation(x*v == -y*w)
# initialize to get a feasible solution
m.options.COLDSTART=2
m.solve(disp=False)
# optimize, preserving the initial conditions (TIME_SHIFT=0)
m.options.TIME_SHIFT=0
m.options.COLDSTART=0
m.solve(disp=False)
plt.plot(m.time,x)
Oscillating behavior will decrees with increasing the time steps or collocation NODES on behave of the calculation time. On the other hand in Julia solving the same problem with the following code
m1 = 1.0
g = 9.81
s =1.0
u? = [0.0, -s, 1.0, 0.0, m1*(1.0+s*g)/2.0/s^2]
du? = [1.0,0.0,0.0,0.0,-g + 2.0 *s*(m1*(1.0+s*g)/2.0/s^2) ]
tspan = (0.0,100.0)
function f(out,du,u,p,t)
x,y,v,w,l = u
out[1] = v - du[1]
out[2] = w - du[2]
out[3] = -2*x*l/m1 - du[3]
out[4] = -g - 2.0*y*l/m1 - du[4]
out[5] = x*v + y*w
end
#using DifferentialEquations
using Sundials
differential_vars = [true,true,true,true,false]
prob = DAEProblem(f,du?,u?,tspan,differential_vars=differential_vars)
sol = solve(prob,IDA())
n=5251
u1=zeros(n)
u2=zeros(n)
u3=zeros(n)
u4=zeros(n)
u5=zeros(n)
for i=1:n u1[i],u2[i],u3[i],u4[i],u5[i] = sol.u[i] end
plot(sol.t,u1)
will give the following plot in rather short period of time. On the other hand, oscilating behaviour is almost unrecognisible. In gekko, I suppose there will requre quite a large number of time steps and quite significant calculation time. I did not tried that.
It seems that there is no general advice of how to solve this kind of problems in Gekko. I would like someone to comment on this.
Best Regards, Radovan
question from:https://stackoverflow.com/questions/66059473/solving-pendulum2-from-schittkowski-dae-test-suite