Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

In R, I am using ccf or acf to compute the pair-wise cross-correlation function so that I can find out which shift gives me the maximum value. From the looks of it, R gives me a normalized sequence of values. Is there something similar in Python's scipy or am I supposed to do it using the fft module? Currently, I am doing it as follows:

xcorr = lambda x,y : irfft(rfft(x)*rfft(y[::-1]))
x = numpy.array([0,0,1,1])
y = numpy.array([1,1,0,0])
print xcorr(x,y)
question from:https://stackoverflow.com/questions/6991471/computing-cross-correlation-function

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
360 views
Welcome To Ask or Share your Answers For Others

1 Answer

To cross-correlate 1d arrays use numpy.correlate.

For 2d arrays, use scipy.signal.correlate2d.

There is also scipy.stsci.convolve.correlate2d.

There is also matplotlib.pyplot.xcorr which is based on numpy.correlate.

See this post on the SciPy mailing list for some links to different implementations.

Edit: @user333700 added a link to the SciPy ticket for this issue in a comment.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...