Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

Question

Is it possible to specify a float precision specifically for each column to be printed by the Python pandas package method pandas.DataFrame.to_csv?

Background

If I have a pandas dataframe that is arranged like this:

In [53]: df_data[:5]
Out[53]: 
    year  month  day       lats       lons  vals
0   2012      6   16  81.862745 -29.834254   0.0
1   2012      6   16  81.862745 -29.502762   0.1
2   2012      6   16  81.862745 -29.171271   0.0
3   2012      6   16  81.862745 -28.839779   0.2
4   2012      6   16  81.862745 -28.508287   0.0

There is the float_format option that can be used to specify a precision, but this applys that precision to all columns of the dataframe when printed.

When I use that like so:

df_data.to_csv(outfile, index=False,
                   header=False, float_format='%11.6f')

I get the following, where vals is given an inaccurate precision:

2012,6,16,  81.862745, -29.834254,   0.000000
2012,6,16,  81.862745, -29.502762,   0.100000
2012,6,16,  81.862745, -29.171270,   0.000000
2012,6,16,  81.862745, -28.839779,   0.200000
2012,6,16,  81.862745, -28.508287,   0.000000
question from:https://stackoverflow.com/questions/20003290/output-different-precision-by-column-with-pandas-dataframe-to-csv

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
483 views
Welcome To Ask or Share your Answers For Others

1 Answer

Change the type of column "vals" prior to exporting the data frame to a CSV file

df_data['vals'] = df_data['vals'].map(lambda x: '%2.1f' % x)

df_data.to_csv(outfile, index=False, header=False, float_format='%11.6f')

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share

548k questions

547k answers

4 comments

86.3k users

...