Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

How do I do an F-test to check if the variance is equivalent in two vectors in Python?

For example if I have

a = [1,2,1,2,1,2,1,2,1,2]
b = [1,3,-1,2,1,5,-1,6,-1,2]

is there something similar to

scipy.stats.ttest_ind(a, b)

I found

sp.stats.f(a, b)

But it appears to be something different to an F-test

question from:https://stackoverflow.com/questions/21494141/how-do-i-do-a-f-test-in-python

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
831 views
Welcome To Ask or Share your Answers For Others

1 Answer

The test statistic F test for equal variances is simply:

F = Var(X) / Var(Y)

Where F is distributed as df1 = len(X) - 1, df2 = len(Y) - 1

scipy.stats.f which you mentioned in your question has a CDF method. This means you can generate a p-value for the given statistic and test whether that p-value is greater than your chosen alpha level.

Thus:

alpha = 0.05 #Or whatever you want your alpha to be.
p_value = scipy.stats.f.cdf(F, df1, df2)
if p_value > alpha:
    # Reject the null hypothesis that Var(X) == Var(Y)

Note that the F-test is extremely sensitive to non-normality of X and Y, so you're probably better off doing a more robust test such as Levene's test or Bartlett's test unless you're reasonably sure that X and Y are distributed normally. These tests can be found in the scipy api:


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...