Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I'm attempting to sync recorded audio (from an AVAudioEngine inputNode) to an audio file that was playing during the recording process. The result should be like multitrack recording where each subsequent new track is synced with the previous tracks that were playing at the time of recording.

Because sampleTime differs between the AVAudioEngine's output and input nodes, I use hostTime to determine the offset of the original audio and the input buffers.

On iOS, I would assume that I'd have to use AVAudioSession's various latency properties (inputLatency, outputLatency, ioBufferDuration) to reconcile the tracks as well as the host time offset, but I haven't figured out the magic combination to make them work. The same goes for the various AVAudioEngine and Node properties like latency and presentationLatency.

On macOS, AVAudioSession doesn't exist (outside of Catalyst), meaning I don't have access to those numbers. Meanwhile, the latency/presentationLatency properties on the AVAudioNodes report 0.0 in most circumstances. On macOS, I do have access to AudioObjectGetPropertyData and can ask the system about kAudioDevicePropertyLatency, kAudioDevicePropertyBufferSize,kAudioDevicePropertySafetyOffset, etc, but am again at a bit of a loss as to what the formula is to reconcile all of these.

I have a sample project at https://github.com/jnpdx/AudioEngineLoopbackLatencyTest that runs a simple loopback test (on macOS, iOS, or Mac Catalyst) and shows the result. On my Mac, the offset between tracks is ~720 samples. On others' Macs, I've seen as much as 1500 samples offset.

On my iPhone, I can get it close to sample-perfect by using AVAudioSession's outputLatency + inputLatency. However, the same formula leaves things misaligned on my iPad.

What's the magic formula for syncing the input and output timestamps on each platform? I know it may be different on each, which is fine, and I know I won't get 100% accuracy, but I would like to get as close as possible before going through my own calibration process

Here's a sample of my current code (full sync logic can be found at https://github.com/jnpdx/AudioEngineLoopbackLatencyTest/blob/main/AudioEngineLoopbackLatencyTest/AudioManager.swift):

//Schedule playback of original audio during initial playback
let delay = 0.33 * state.secondsToTicks
let audioTime = AVAudioTime(hostTime: mach_absolute_time() + UInt64(delay))
state.audioBuffersScheduledAtHost = audioTime.hostTime

...

//in the inputNode's inputTap, store the first timestamp
audioEngine.inputNode.installTap(onBus: 0, bufferSize: 1024, format: recordingFormat) { (pcmBuffer, timestamp) in
            if self.state.inputNodeTapBeganAtHost == 0 {
                self.state.inputNodeTapBeganAtHost = timestamp.hostTime
            }
}

...

//after playback, attempt to reconcile/sync the timestamps recorded above

let timestampToSyncTo = state.audioBuffersScheduledAtHost
let inputNodeHostTimeDiff = Int64(state.inputNodeTapBeganAtHost) - Int64(timestampToSyncTo)
let inputNodeDiffInSamples = Double(inputNodeHostTimeDiff) / state.secondsToTicks * inputFileBuffer.format.sampleRate //secondsToTicks is calculated using mach_timebase_info

//play the original metronome audio at sample position 0 and try to sync everything else up to it
let originalAudioTime = AVAudioTime(sampleTime: 0, atRate: renderingEngine.mainMixerNode.outputFormat(forBus: 0).sampleRate)
originalAudioPlayerNode.scheduleBuffer(metronomeFileBuffer, at: originalAudioTime, options: []) {
  print("Played original audio")
}

//play the tap of the input node at its determined sync time -- this _does not_ appear to line up in the result file
let inputAudioTime = AVAudioTime(sampleTime: AVAudioFramePosition(inputNodeDiffInSamples), atRate: renderingEngine.mainMixerNode.outputFormat(forBus: 0).sampleRate)
recordedInputNodePlayer.scheduleBuffer(inputFileBuffer, at: inputAudioTime, options: []) {
  print("Input buffer played")
}


When running the sample app, here's the result I get:

Result of sync test

question from:https://stackoverflow.com/questions/65600996/avaudioengine-reconcile-sync-input-output-timestamps-on-macos-ios

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
198 views
Welcome To Ask or Share your Answers For Others

1 Answer

This answer is applicable to native macOS only

General Latency Determination

Output

In the general case the output latency for a stream on a device is determined by the sum of the following properties:

  1. kAudioDevicePropertySafetyOffset
  2. kAudioStreamPropertyLatency
  3. kAudioDevicePropertyLatency
  4. kAudioDevicePropertyBufferFrameSize

The device safety offset, stream, and device latency values should be retrieved for kAudioObjectPropertyScopeOutput.

On my Mac for the audio device MacBook Pro Speakers at 44.1 kHz this equates to 71 + 424 + 11 + 512 = 1018 frames.

Input

Similarly, the input latency is determined by the sum of the following properties:

  1. kAudioDevicePropertySafetyOffset
  2. kAudioStreamPropertyLatency
  3. kAudioDevicePropertyLatency
  4. kAudioDevicePropertyBufferFrameSize

The device safety offset, stream, and device latency values should be retrieved for kAudioObjectPropertyScopeInput.

On my Mac for the audio device MacBook Pro Microphone at 44.1 kHz this equates to 114 + 2404 + 40 + 512 = 3070 frames.

AVAudioEngine

How the information above relates to AVAudioEngine is not immediately clear. Internally AVAudioEngine creates a private aggregate device and Core Audio essentially handles latency compensation for aggregate devices automatically.

During experimentation for this answer I've found that some (most?) audio devices don't report latency correctly. At least that is how it seems, which makes accurate latency determination nigh impossible.

I was able to get fairly accurate synchronization using my Mac's built-in audio using the following adjustments:

// Some non-zero value to get AVAudioEngine running
let startDelay = 0.1

// The original audio file start time
let originalStartingFrame: AVAudioFramePosition = AVAudioFramePosition(playerNode.outputFormat(forBus: 0).sampleRate * startDelay)

// The output tap's first sample is delivered to the device after the buffer is filled once
// A number of zero samples equal to the buffer size is produced initially
let outputStartingFrame: AVAudioFramePosition = Int64(state.outputBufferSizeFrames)

// The first output sample makes it way back into the input tap after accounting for all the latencies
let inputStartingFrame: AVAudioFramePosition = outputStartingFrame - Int64(state.outputLatency + state.outputStreamLatency + state.outputSafetyOffset + state.inputSafetyOffset + state.inputLatency + state.inputStreamLatency)

On my Mac the values reported by the AVAudioEngine aggregate device were:

// Output:
// kAudioDevicePropertySafetyOffset:    144
// kAudioDevicePropertyLatency:          11
// kAudioStreamPropertyLatency:         424
// kAudioDevicePropertyBufferFrameSize: 512

// Input:
// kAudioDevicePropertySafetyOffset:     154
// kAudioDevicePropertyLatency:            0
// kAudioStreamPropertyLatency:         2404
// kAudioDevicePropertyBufferFrameSize:  512

which equated to the following offsets:

originalStartingFrame =  4410
outputStartingFrame   =   512
inputStartingFrame    = -2625

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...