I was wondering how to speed up the following code in where I compute a probability function which involves nummerical integrals and then I compute some confidence margins.
Some possibilities that I have thought about are Numba or vectorization of the code
EDIT: I have made minor modifications because there was a mistake. I am looking for some modifications that provide major time improvements (I know that there are some minor changes that would provide some minor time improvements, such as repeated functions, but I am not concerned about them) The code is:
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 26 17:05:46 2021
@author: Ignacio
"""
import numpy as np
from scipy.integrate import simps
def pdf(V,alfa_points):
alfa=np.linspace(0,2*np.pi,alfa_points)
return simps(1/np.sqrt(2*np.pi)/np.sqrt(sigma_R2)*np.exp(-(V*np.cos(alfa)-eR)**2/2/sigma_R2)*1/np.sqrt(2*np.pi)/np.sqrt(sigma_I2)*np.exp(-(V*np.sin(alfa)-eI)**2/2/sigma_I2),alfa)
def find_nearest(array,value):
array=np.asarray(array)
idx = (np.abs(array-value)).argmin()
return array[idx]
N = 20
n=np.linspace(0,N-1,N)
d=1
sigma_An=0.1
sigma_Pn=0.2
An=np.ones(N)
Pn=np.zeros(N)
Vs=np.linspace(0,30,1000)
inc=np.max(Vs)/len(Vs)
th=np.linspace(0,np.pi/2,250)
R=np.sum(An*np.cos(Pn+2*np.pi*np.sin(th[:,np.newaxis])*n*d),axis=1)
I=np.sum(An*np.sin(Pn+2*np.pi*np.sin(th[:,np.newaxis])*n*d),axis=1)
fmin=np.zeros(len(th))
fmax=np.zeros(len(th))
for tt in range(len(th)):
eR=np.exp(-sigma_Pn**2/2)*np.sum(An*np.cos(Pn+2*np.pi*np.sin(th[tt])*n*d))
eI=np.exp(-sigma_Pn**2/2)*np.sum(An*np.sin(Pn+2*np.pi*np.sin(th[tt])*n*d))
sigma_R2=1/2*np.sum(An*sigma_An**2)+1/2*(1-np.exp(-sigma_Pn**2))*np.sum(An**2)+1/2*np.sum(np.cos(2*(Pn+2*np.pi*np.sin(th[tt])*n*d))*((An**2+sigma_An**2)*np.exp(-2*sigma_Pn**2)-An**2*np.exp(-sigma_Pn**2)))
sigma_I2=1/2*np.sum(An*sigma_An**2)+1/2*(1-np.exp(-sigma_Pn**2))*np.sum(An**2)-1/2*np.sum(np.cos(2*(Pn+2*np.pi*np.sin(th[tt])*n*d))*((An**2+sigma_An**2)*np.exp(-2*sigma_Pn**2)-An**2*np.exp(-sigma_Pn**2)))
PDF=np.zeros(len(Vs))
for vv in range(len(Vs)):
PDF[vv]=pdf(Vs[vv],100)
total=simps(PDF,Vs)
values=np.cumsum(PDF)*inc/total
xval_05=find_nearest(values,0.05)
fmin[tt]=Vs[values==xval_05]
xval_95=find_nearest(values,0.95)
fmax[tt]=Vs[values==xval_95]
question from:https://stackoverflow.com/questions/65903777/efficient-computation-of-a-loop-of-integrals-in-python