I have been trying to implement some code requiring to call reduce on thrust::device_ptr, and the results are not consistent with CPU implementation while dealing with large values. I have to deal with large values. So is there a way around:
My code:
#include <cuda_runtime_api.h>
#include <stdio.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>
#define NZ 412//
#define NX 402//
using namespace std;
using real =double;
void allocate_array_2d(real**& preal, const int dim1, const int dim2) {
// Contiguous allocation of 2D arrays
preal = new real * [dim1];
preal[0] = new real[dim1 * dim2];
for (int i = 1; i < dim1; i++) preal[i] = preal[i - 1] + dim2;
for (int i = 0; i < dim1; i++) {
for (int j = 0; j < dim2; j++) {
preal[i][j] = 0;
}
}
}
#define cudaCheckError(code)
{
if ((code) != cudaSuccess) {
fprintf(stderr, "Cuda failure %s:%d: '%s'
", __FILE__, __LINE__,
cudaGetErrorString(code));
}
}
int main()
{
real** a;
std::cout.precision(30);
allocate_array_2d(a, NZ, NX);//input array
for (int i = 0; i < NZ; i++) {
for (int j = 0; j < NX; j++) {
a[i][j] = 2.14748e+09;
}
}
real* da;
cudaCheckError(cudaMalloc(&da, NZ * NX * sizeof(real)));
cudaCheckError(cudaMemcpy(da,a[0], NZ * NX * sizeof(real),cudaMemcpyHostToDevice));
///************************
//CUDA KERNELS ARE HERE
// REMOVED FOR CLEAR QUESTION
///*************************
real sum1=0;
thrust::device_ptr<real> dev_ptr = thrust::device_pointer_cast(da);
sum1 = thrust::reduce(dev_ptr, dev_ptr+NZ*NX, 0, thrust::plus<real>());
cout<<"
sum gpu "<< sum1<<"
";
real sum2=0;
////////CPU PART DOING SAME THING//////
for (int i = 0; i < NZ; i++) {
for (int j = 0; j < NX; j++) {
sum2 += a[i][j];
}
}
cout<<"
sum cpu "<< sum2<<"
";
if((sum2-sum1)<0.001)
std::cout << "
SUCESS "<< "
";
else
std::cout << "
Failure & by "<<sum2-sum1<< "
";
}
The compiler that I am using is nvcc and my graphics card is nvidia 1650 with compute capability 7.5.
question from:https://stackoverflow.com/questions/65912029/value-of-sum-from-thrustreduce-not-correct