Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

Is there an equivalent of Pandas Melt Function in Apache Spark in PySpark or at least in Scala?

I was running a sample dataset till now in python and now I want to use Spark for the entire dataset.

Thanks in advance.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
1.5k views
Welcome To Ask or Share your Answers For Others

1 Answer

There is no built-in function (if you work with SQL and Hive support enabled you can use stack function, but it is not exposed in Spark and has no native implementation) but it is trivial to roll your own. Required imports:

from pyspark.sql.functions import array, col, explode, lit, struct
from pyspark.sql import DataFrame
from typing import Iterable 

Example implementation:

def melt(
        df: DataFrame, 
        id_vars: Iterable[str], value_vars: Iterable[str], 
        var_name: str="variable", value_name: str="value") -> DataFrame:
    """Convert :class:`DataFrame` from wide to long format."""

    # Create array<struct<variable: str, value: ...>>
    _vars_and_vals = array(*(
        struct(lit(c).alias(var_name), col(c).alias(value_name)) 
        for c in value_vars))

    # Add to the DataFrame and explode
    _tmp = df.withColumn("_vars_and_vals", explode(_vars_and_vals))

    cols = id_vars + [
            col("_vars_and_vals")[x].alias(x) for x in [var_name, value_name]]
    return _tmp.select(*cols)

And some tests (based on Pandas doctests):

import pandas as pd

pdf = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
                   'B': {0: 1, 1: 3, 2: 5},
                   'C': {0: 2, 1: 4, 2: 6}})

pd.melt(pdf, id_vars=['A'], value_vars=['B', 'C'])
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
3  a        C      2
4  b        C      4
5  c        C      6
sdf = spark.createDataFrame(pdf)
melt(sdf, id_vars=['A'], value_vars=['B', 'C']).show()
+---+--------+-----+
|  A|variable|value|
+---+--------+-----+
|  a|       B|    1|
|  a|       C|    2|
|  b|       B|    3|
|  b|       C|    4|
|  c|       B|    5|
|  c|       C|    6|
+---+--------+-----+

Note: For use with legacy Python versions remove type annotations.

Related:


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...