i've recently come across a producer/consumer pattern c# implementation. it's very simple and (for me at least) very elegant.
it seems to have been devised around 2006, so i was wondering if this implementation is
- safe
- still applicable
Code is below (original code was referenced at http://bytes.com/topic/net/answers/575276-producer-consumer#post2251375)
using System;
using System.Collections;
using System.Threading;
public class Test
{
static ProducerConsumer queue;
static void Main()
{
queue = new ProducerConsumer();
new Thread(new ThreadStart(ConsumerJob)).Start();
Random rng = new Random(0);
for (int i=0; i < 10; i++)
{
Console.WriteLine ("Producing {0}", i);
queue.Produce(i);
Thread.Sleep(rng.Next(1000));
}
}
static void ConsumerJob()
{
// Make sure we get a different random seed from the
// first thread
Random rng = new Random(1);
// We happen to know we've only got 10
// items to receive
for (int i=0; i < 10; i++)
{
object o = queue.Consume();
Console.WriteLine ("Consuming {0}", o);
Thread.Sleep(rng.Next(1000));
}
}
}
public class ProducerConsumer
{
readonly object listLock = new object();
Queue queue = new Queue();
public void Produce(object o)
{
lock (listLock)
{
queue.Enqueue(o);
// We always need to pulse, even if the queue wasn't
// empty before. Otherwise, if we add several items
// in quick succession, we may only pulse once, waking
// a single thread up, even if there are multiple threads
// waiting for items.
Monitor.Pulse(listLock);
}
}
public object Consume()
{
lock (listLock)
{
// If the queue is empty, wait for an item to be added
// Note that this is a while loop, as we may be pulsed
// but not wake up before another thread has come in and
// consumed the newly added object. In that case, we'll
// have to wait for another pulse.
while (queue.Count==0)
{
// This releases listLock, only reacquiring it
// after being woken up by a call to Pulse
Monitor.Wait(listLock);
}
return queue.Dequeue();
}
}
}
Question&Answers:os