Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

NumPy is an extremely useful library, and from using it I've found that it's capable of handling matrices which are quite large (10000 x 10000) easily, but begins to struggle with anything much larger (trying to create a matrix of 50000 x 50000 fails). Obviously, this is because of the massive memory requirements.

Is there is a way to create huge matrices natively in NumPy (say 1 million by 1 million) in some way (without having several terrabytes of RAM)?

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
891 views
Welcome To Ask or Share your Answers For Others

1 Answer

PyTables and NumPy are the way to go.

PyTables will store the data on disk in HDF format, with optional compression. My datasets often get 10x compression, which is handy when dealing with tens or hundreds of millions of rows. It's also very fast; my 5 year old laptop can crunch through data doing SQL-like GROUP BY aggregation at 1,000,000 rows/second. Not bad for a Python-based solution!

Accessing the data as a NumPy recarray again is as simple as:

data = table[row_from:row_to]

The HDF library takes care of reading in the relevant chunks of data and converting to NumPy.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...