Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I'm trying to learn BNF and attempting to assemble some Z80 ASM code. Since I'm new to both fields, my question is, am I even on the right track? I am trying to write the format of Z80 ASM as EBNF so that I can then figure out where to go from there to create machine code from the source. At the moment I have the following:

Assignment = Identifier, ":" ;

Instruction = Opcode, [ Operand ], [ Operand ] ;

Operand = Identifier | Something* ;

Something* = "(" , Identifier, ")" ;

Identifier = Alpha, { Numeric | Alpha } ;

Opcode = Alpha, Alpha ;

Int = [ "-" ], Numeric, { Numeric } ;

Alpha = "A" | "B" | "C" | "D" | "E" | "F" | 
        "G" | "H" | "I" | "J" | "K" | "L" | 
        "M" | "N" | "O" | "P" | "Q" | "R" | 
        "S" | "T" | "U" | "V" | "W" | "X" | 
        "Y" | "Z" ;

Numeric = "0" | "1" | "2" | "3"| "4" | 
          "5" | "6" | "7" | "8" | "9" ;

Any directional feedback if I am going wrong would be excellent.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
1.2k views
Welcome To Ask or Share your Answers For Others

1 Answer

Old-school assemblers were typically hand-coded in assembler and used adhoc parsing techniques to process assembly source lines to produce actual assembler code. When assembler syntax is simple (e.g. always OPCODE REG, OPERAND) this worked well enough.

Modern machines have messy, nasty instruction sets with lots of instruction variations and operands, which may be expressed with complex syntax allowing multiple index registers to participate in the operand expression. Allowing sophisticated assembly-time expressions with fixed and relocatable constants with various types of addition operators complicates this. Sophisticated assemblers allowing conditional compilation, macros, structured data declarations, etc. all add new demands on syntax. Processing all this syntax by ad hoc methods is very hard and is the reason that parser generators were invented.

Using a BNF and a parser generator is very reasonable way to build a modern assembler, even for a legacy processor such as the Z80. I have built such assemblers for Motorola 8 bit machines such as the 6800/6809, and am getting ready to do the same for a modern x86. I think you're headed down exactly the right path.

********** EDIT **************** The OP asked for example lexer and parser definitions. I've provided both here.

These are excerpts from real specifications for a 6809 asssembler. The complete definitions are 2-3x the size of the samples here.

To keep space down, I have edited out much of the dark-corner complexity which is the point of these definitions. One might be dismayed by the apparant complexity; the point is that with such definitions, you are trying to describe the shape of the language, not code it procedurally. You will pay a significantly higher complexity if you code all this in an ad hoc manner, and it will be far less maintainable.

It will also be of some help to know that these definitions are used with a high-end program analysis system that has lexing/parsing tools as subsystems, called the The DMS Software Reengineering Toolkit. DMS will automatically build ASTs from the
grammar rules in the parser specfication, which makes it a lot easier to buid parsing tools. Lastly, the parser specification contains so-called "prettyprinter" declarations, which allows DMS to regenreate source text from the ASTs. (The real purpose of the grammer was to allow us to build ASTs representing assembler instructions, and then spit them out to be fed to a real assembler!)

One thing of note: how lexemes and grammar rules are stated (the metasyntxax!) varies somewhat between different lexer/parser generator systems. The syntax of DMS-based specifications is no exception. DMS has relatively sophisticated grammar rules of its own, that really aren't practical to explain in the space available here. You'll have to live with idea that other systems use similar notations, for EBNF for rules and and regular expression variants for lexemes.

Given the OP's interests, he can implement similar lexer/parsers with any lexer/parser generator tool, e.g., FLEX/YACC, JAVACC, ANTLR, ...

********** LEXER **************

-- M6809.lex: Lexical Description for M6809
-- Copyright (C) 1989,1999-2002 Ira D. Baxter

%%
#mainmode Label

#macro digit "[0-9]"
#macro hexadecimaldigit "<digit>|[a-fA-F]"

#macro comment_body_character "[u0009 u0020-u007E]" -- does not include NEWLINE

#macro blank "[u0000  u0009]"

#macro hblanks "<blank>+"

#macro newline "u000d u000a? u000c? | u000a u000c?" -- form feed allowed only after newline

#macro bare_semicolon_comment "; <comment_body_character>* "

#macro bare_asterisk_comment "* <comment_body_character>* "

...[snip]

#macro hexadecimal_digit "<digit> | [a-fA-F]"

#macro binary_digit "[01]"

#macro squoted_character "' [u0021-u007E]"

#macro string_character "[u0009 u0020-u007E]"

%%Label -- (First mode) processes left hand side of line: labels, opcodes, etc.

#skip "(<blank>*<newline>)+"
#skip "(<blank>*<newline>)*<blank>+"
  << (GotoOpcodeField ?) >>

#precomment "<comment_line><newline>"

#preskip "(<blank>*<newline>)+"
#preskip "(<blank>*<newline>)*<blank>+"
  << (GotoOpcodeField ?) >>

-- Note that an apparant register name is accepted as a label in this mode
#token LABEL [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  (GotoLabelList ?)
  >>

%%OpcodeField

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

-- Opcode field tokens
#token 'ABA'       "[aA][bB][aA]"
   << (GotoEOLComment ?) >>
#token 'ABX'       "[aA][bB][xX]"
   << (GotoEOLComment ?) >>
#token 'ADC'       "[aA][dD][cC]"
   << (GotoABregister ?) >>
#token 'ADCA'      "[aA][dD][cC][aA]"
   << (GotoOperand ?) >>
#token 'ADCB'      "[aA][dD][cC][bB]"
   << (GotoOperand ?) >>
#token 'ADCD'      "[aA][dD][cC][dD]"
   << (GotoOperand ?) >>
#token 'ADD'       "[aA][dD][dD]"
   << (GotoABregister ?) >>
#token 'ADDA'      "[aA][dD][dD][aA]"
   << (GotoOperand ?) >>
#token 'ADDB'      "[aA][dD][dD][bB]"
   << (GotoOperand ?) >>
#token 'ADDD'      "[aA][dD][dD][dD]"
   << (GotoOperand ?) >>
#token 'AND'       "[aA][nN][dD]"
   << (GotoABregister ?) >>
#token 'ANDA'      "[aA][nN][dD][aA]"
   << (GotoOperand ?) >>
#token 'ANDB'      "[aA][nN][dD][bB]"
   << (GotoOperand ?) >>
#token 'ANDCC'     "[aA][nN][dD][cC][cC]"
   << (GotoRegister ?) >>
...[long list of opcodes snipped]

#token IDENTIFIER [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Result (reference string)] (. ?:Lexeme:Literal:String:Value))
         [ThisCharacterCode natural]
         (define Ordinala #61)
         (define Ordinalf #66)
         (define OrdinalA #41)
         (define OrdinalF #46)
     );;
     (;; (= (@ Result) `') ; start with empty string
     (while (<= TokenScan TokenLength)
      (;;   (= ThisCharacterCode (coerce natural TokenString:TokenScan))  
        (+= TokenScan) ; bump past character
        (ifthen (>= ThisCharacterCode Ordinala)
           (-= ThisCharacterCode #20) ; fold to upper case
        )ifthen
        (= (@ Result) (append (@ Result) (coerce character ThisCharacterCode)))=

        );;
     )while
     );;
  )local
  (= ?:Lexeme:Literal:String:Format (LiteralFormat:MakeCompactStringLiteralFormat 0))  ; nothing interesting in string
  (GotoOperandField ?)
  >>

#token '#'   "#" -- special constant introduction (FDB)
   << (GotoDataField ?) >>

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token NUMBER [NATURAL] "$ <hexadecimal_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertHexadecimalTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token NUMBER [NATURAL] "\% <binary_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertBinaryTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
 (GotoOperandField ?)
  >>

#token CHARACTER [CHARACTER] "<squoted_character>"
  <<  (= ?:Lexeme:Literal:Character:Value (TokenStringCharacter ? 2))
  (= ?:Lexeme:Literal:Character:Format (LiteralFormat:MakeCompactCharacterLiteralFormat 0 0)) ; nothing special about character
  (GotoOperandField ?)
  >>


%%OperandField

#skip "<hblanks>"
  << (GotoEOLComment ?) >>
#ifnotoken
  << (GotoEOLComment ?) >>

-- Tokens signalling switch to index register modes
#token ','   ","
   <<(GotoRegisterField ?)>>
#token '['   "["
   <<(GotoRegisterField ?)>>

-- Operators for arithmetic syntax
#token '!!'  "!!"
#token '!'   "!"
#token '##'  "##"
#token '#'   "#"
#token '&'   "&"
#token '('   "("
#token ')'   ")"
#token '*'   "*"
#token '+'   "+"
#token '-'   "-"
#token '/'   "/"
#token '//'   "//"
#token '<'   "<"
#token '<'   "<" 
#token '<<'  "<<"
#token '<='  "<="
#token '</'  "</"
#token '='   "="
#token '>'   ">"
#token '>'   ">"
#token '>='  ">="
#token '>>'  ">>"
#token '>/'  ">/"
#token '\'  ""
#token '|'   "|"
#token '||'  "||"

#token NUMBER [NATURAL] "<decimal_number>"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertDecimalTokenStringToNatural (. format) ? 0 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

#token NUMBER [NATURAL] "$ <hexadecimal_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertHexadecimalTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

#token NUMBER [NATURAL] "\% <binary_digit>+"
  << (local [format LiteralFormat:NaturalLiteralFormat]
    (;; (= ?:Lexeme:Literal:Natural:Value (ConvertBinaryTokenStringToNatural (. format) ? 1 0))
    (= ?:Lexeme:Literal:Natural:Format (LiteralFormat:MakeCompactNaturalLiteralFormat format))
    );;
 )local
  >>

-- Notice that an apparent register is accepted as a label in this mode
#token IDENTIFIER [STRING] "<identifier>"
  <<  (local (;; (= [TokenScan natural] 1) ; process all string characters
         (= [TokenLength natural] ?:TokenCharacterCount)=
         (= [TokenString (reference TokenBodyT)] (. ?:TokenCharacters))
         (= [Re

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...