Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I have a DF with a huge parseable metadata as a single string column in a Dataframe, lets call it DFA, with ColmnA.

I would like to break this column, ColmnA into multiple columns thru a function, ClassXYZ = Func1(ColmnA). This function returns a class ClassXYZ, with multiple variables, and each of these variables now has to be mapped to new Column, such a ColmnA1, ColmnA2 etc.

How would I do such a transformation from 1 Dataframe to another with these additional columns by calling this Func1 just once, and not have to repeat-it to create all the columns.

Its easy to solve if I were to call this huge function every time to add a new column, but that what I wish to avoid.

Kindly please advise with a working or pseudo code.

Thanks

Sanjay

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
622 views
Welcome To Ask or Share your Answers For Others

1 Answer

Generally speaking what you want is not directly possible. UDF can return only a single column at the time. There are two different ways you can overcome this limitation:

  1. Return a column of complex type. The most general solution is a StructType but you can consider ArrayType or MapType as well.

    import org.apache.spark.sql.functions.udf
    
    val df = Seq(
      (1L, 3.0, "a"), (2L, -1.0, "b"), (3L, 0.0, "c")
    ).toDF("x", "y", "z")
    
    case class Foobar(foo: Double, bar: Double)
    
    val foobarUdf = udf((x: Long, y: Double, z: String) => 
      Foobar(x * y, z.head.toInt * y))
    
    val df1 = df.withColumn("foobar", foobarUdf($"x", $"y", $"z"))
    df1.show
    // +---+----+---+------------+
    // |  x|   y|  z|      foobar|
    // +---+----+---+------------+
    // |  1| 3.0|  a| [3.0,291.0]|
    // |  2|-1.0|  b|[-2.0,-98.0]|
    // |  3| 0.0|  c|   [0.0,0.0]|
    // +---+----+---+------------+
    
    df1.printSchema
    // root
    //  |-- x: long (nullable = false)
    //  |-- y: double (nullable = false)
    //  |-- z: string (nullable = true)
    //  |-- foobar: struct (nullable = true)
    //  |    |-- foo: double (nullable = false)
    //  |    |-- bar: double (nullable = false)
    

    This can be easily flattened later but usually there is no need for that.

  2. Switch to RDD, reshape and rebuild DF:

    import org.apache.spark.sql.types._
    import org.apache.spark.sql.Row
    
    def foobarFunc(x: Long, y: Double, z: String): Seq[Any] = 
      Seq(x * y, z.head.toInt * y)
    
    val schema = StructType(df.schema.fields ++
      Array(StructField("foo", DoubleType), StructField("bar", DoubleType)))
    
    val rows = df.rdd.map(r => Row.fromSeq(
      r.toSeq ++
      foobarFunc(r.getAs[Long]("x"), r.getAs[Double]("y"), r.getAs[String]("z"))))
    
    val df2 = sqlContext.createDataFrame(rows, schema)
    
    df2.show
    // +---+----+---+----+-----+
    // |  x|   y|  z| foo|  bar|
    // +---+----+---+----+-----+
    // |  1| 3.0|  a| 3.0|291.0|
    // |  2|-1.0|  b|-2.0|-98.0|
    // |  3| 0.0|  c| 0.0|  0.0|
    // +---+----+---+----+-----+
    

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...