Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I have some rather large pandas DataFrames and I'd like to use the new bulk SQL mappings to upload them to a Microsoft SQL Server via SQL Alchemy. The pandas.to_sql method, while nice, is slow.

I'm having trouble writing the code...

I'd like to be able to pass this function a pandas DataFrame which I'm calling table, a schema name I'm calling schema, and a table name I'm calling name. Ideally, the function will 1.) delete the table if it already exists. 2.) create a new table 3.) create a mapper and 4.) bulk insert using the mapper and pandas data. I'm stuck on part 3.

Here's my (admittedly rough) code. I'm struggling with how to get the mapper function to work with my primary keys. I don't really need primary keys but the mapper function requires it.

Thanks for the insights.

from sqlalchemy import create_engine Table, Column, MetaData
from sqlalchemy.orm import mapper, create_session
from sqlalchemy.ext.declarative import declarative_base
from pandas.io.sql import SQLTable, SQLDatabase

def bulk_upload(table, schema, name):
    e = create_engine('mssql+pyodbc://MYDB')
    s = create_session(bind=e)
    m = MetaData(bind=e,reflect=True,schema=schema)
    Base = declarative_base(bind=e,metadata=m)
    t = Table(name,m)
    m.remove(t)
    t.drop(checkfirst=True)
    sqld = SQLDatabase(e, schema=schema,meta=m)
    sqlt = SQLTable(name, sqld, table).table
    sqlt.metadata = m
    m.create_all(bind=e,tables=[sqlt])    
    class MyClass(Base):
        return
    mapper(MyClass, sqlt)    

    s.bulk_insert_mappings(MyClass, table.to_dict(orient='records'))
    return
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
724 views
Welcome To Ask or Share your Answers For Others

1 Answer

I ran into a similar issue with pd.to_sql taking hours to upload data. The below code bulk inserted the same data in a few seconds.

from sqlalchemy import create_engine
import psycopg2 as pg
#load python script that batch loads pandas df to sql
import cStringIO

address = 'postgresql://<username>:<pswd>@<host>:<port>/<database>'
engine = create_engine(address)
connection = engine.raw_connection()
cursor = connection.cursor()

#df is the dataframe containing an index and the columns "Event" and "Day"
#create Index column to use as primary key
df.reset_index(inplace=True)
df.rename(columns={'index':'Index'}, inplace =True)

#create the table but first drop if it already exists
command = '''DROP TABLE IF EXISTS localytics_app2;
CREATE TABLE localytics_app2
(
"Index" serial primary key,
"Event" text,
"Day" timestamp without time zone,
);'''
cursor.execute(command)
connection.commit()

#stream the data using 'to_csv' and StringIO(); then use sql's 'copy_from' function
output = cStringIO.StringIO()
#ignore the index
df.to_csv(output, sep='', header=False, index=False)
#jump to start of stream
output.seek(0)
contents = output.getvalue()
cur = connection.cursor()
#null values become ''
cur.copy_from(output, 'localytics_app2', null="")    
connection.commit()
cur.close()

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...