Using sample data:
df = pd.DataFrame({'key1' : ['a','a','b','b','a'],
'key2' : ['one', 'two', 'one', 'two', 'one'],
'data1' : np.random.randn(5),
'data2' : np. random.randn(5)})
df
data1 data2 key1 key2
0 0.361601 0.375297 a one
1 0.069889 0.809772 a two
2 1.468194 0.272929 b one
3 -1.138458 0.865060 b two
4 -0.268210 1.250340 a one
I'm trying to figure out how to group the data by key1 and sum only the data1 values where key2 equals 'one'.
Here's what I've tried
def f(d,a,b):
d.ix[d[a] == b, 'data1'].sum()
df.groupby(['key1']).apply(f, a = 'key2', b = 'one').reset_index()
But this gives me a dataframe with 'None' values
index key1 0
0 a None
1 b None
Any ideas here? I'm looking for the Pandas equivalent of the following SQL:
SELECT Key1, SUM(CASE WHEN Key2 = 'one' then data1 else 0 end)
FROM df
GROUP BY key1
FYI - I've seen conditional sums for pandas aggregate but couldn't transform the answer provided there to work with sums rather than counts.
Thanks in advance
See Question&Answers more detail:os