Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

Edit: keyword is 'bar chart race'

How would you go at reproducing this chart from Jaime Albella in R ?

See the animation on visualcapitalist.com or on twitter (giving several references in case one breaks).

enter image description here

I'm tagging this as ggplot2 and gganimate but anything that can be produced from R is relevant.

data (thanks to https://github.com/datasets/gdp )

gdp <- read.csv("https://raw.github.com/datasets/gdp/master/data/gdp.csv")
# remove irrelevant aggregated values
words <- scan(
  text="world income only total dividend asia euro america africa oecd",
  what= character())
pattern <- paste0("(",words,")",collapse="|")
gdp  <- subset(gdp, !grepl(pattern, Country.Name , ignore.case = TRUE))

Edit:

Another cool example from John Murdoch :

Most populous cities from 1500 to 2018

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
304 views
Welcome To Ask or Share your Answers For Others

1 Answer

Edit: added spline interpolation for smoother transitions, without making rank changes happen too fast. Code at bottom.

enter image description here


I've adapted an answer of mine to a related question. I like to use geom_tile for animated bars, since it allows you to slide positions.

I worked on this prior to your addition of data, but as it happens, the gapminder data I used is closely related.

enter image description here

library(tidyverse)
library(gganimate)
library(gapminder)
theme_set(theme_classic())

gap <- gapminder %>%
  filter(continent == "Asia") %>%
  group_by(year) %>%
  # The * 1 makes it possible to have non-integer ranks while sliding
  mutate(rank = min_rank(-gdpPercap) * 1) %>%
  ungroup()

p <- ggplot(gap, aes(rank, group = country, 
                     fill = as.factor(country), color = as.factor(country))) +
  geom_tile(aes(y = gdpPercap/2,
                height = gdpPercap,
                width = 0.9), alpha = 0.8, color = NA) +

  # text in x-axis (requires clip = "off" in coord_*)
  # paste(country, " ")  is a hack to make pretty spacing, since hjust > 1 
  #   leads to weird artifacts in text spacing.
  geom_text(aes(y = 0, label = paste(country, " ")), vjust = 0.2, hjust = 1) +

  coord_flip(clip = "off", expand = FALSE) +
  scale_y_continuous(labels = scales::comma) +
  scale_x_reverse() +
  guides(color = FALSE, fill = FALSE) +

  labs(title='{closest_state}', x = "", y = "GFP per capita") +
  theme(plot.title = element_text(hjust = 0, size = 22),
        axis.ticks.y = element_blank(),  # These relate to the axes post-flip
        axis.text.y  = element_blank(),  # These relate to the axes post-flip
        plot.margin = margin(1,1,1,4, "cm")) +

  transition_states(year, transition_length = 4, state_length = 1) +
  ease_aes('cubic-in-out')

animate(p, fps = 25, duration = 20, width = 800, height = 600)

For the smoother version at the top, we can add a step to interpolate the data further before the plotting step. It can be useful to interpolate twice, once at rough granularity to determine the ranking, and another time for finer detail. If the ranking is calculated too finely, the bars will swap position too quickly.

gap_smoother <- gapminder %>%
  filter(continent == "Asia") %>%
  group_by(country) %>%
  # Do somewhat rough interpolation for ranking
  # (Otherwise the ranking shifts unpleasantly fast.)
  complete(year = full_seq(year, 1)) %>%
  mutate(gdpPercap = spline(x = year, y = gdpPercap, xout = year)$y) %>%
  group_by(year) %>%
  mutate(rank = min_rank(-gdpPercap) * 1) %>%
  ungroup() %>%

  # Then interpolate further to quarter years for fast number ticking.
  # Interpolate the ranks calculated earlier.
  group_by(country) %>%
  complete(year = full_seq(year, .5)) %>%
  mutate(gdpPercap = spline(x = year, y = gdpPercap, xout = year)$y) %>%
  # "approx" below for linear interpolation. "spline" has a bouncy effect.
  mutate(rank =      approx(x = year, y = rank,      xout = year)$y) %>%
  ungroup()  %>% 
  arrange(country,year)

Then the plot uses a few modified lines, otherwise the same:

p <- ggplot(gap_smoother, ...
  # This line for the numbers that tick up
  geom_text(aes(y = gdpPercap,
                label = scales::comma(gdpPercap)), hjust = 0, nudge_y = 300 ) +
  ...
  labs(title='{closest_state %>% as.numeric %>% floor}', 
   x = "", y = "GFP per capita") +
...
transition_states(year, transition_length = 1, state_length = 0) +
enter_grow() +
exit_shrink() +
ease_aes('linear')

animate(p, fps = 20, duration = 5, width = 400, height = 600, end_pause = 10)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...