Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I have following 2 data frames:

df_a =

     mukey  DI  PI
0   100000  35  14
1  1000005  44  14
2  1000006  44  14
3  1000007  43  13
4  1000008  43  13

df_b = 
    mukey  niccdcd
0  190236        4
1  190237        6
2  190238        7
3  190239        4
4  190240        7

When I try to join these 2 dataframes:

join_df = df_a.join(df_b,on='mukey',how='left')

I get the error:

*** ValueError: columns overlap but no suffix specified: Index([u'mukey'], dtype='object')

Why is this so? The dataframes do have common 'mukey' values.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
553 views
Welcome To Ask or Share your Answers For Others

1 Answer

Your error on the snippet of data you posted is a little cryptic, in that because there are no common values, the join operation fails because the values don't overlap it requires you to supply a suffix for the left and right hand side:

In [173]:

df_a.join(df_b, on='mukey', how='left', lsuffix='_left', rsuffix='_right')
Out[173]:
       mukey_left  DI  PI  mukey_right  niccdcd
index                                          
0          100000  35  14          NaN      NaN
1         1000005  44  14          NaN      NaN
2         1000006  44  14          NaN      NaN
3         1000007  43  13          NaN      NaN
4         1000008  43  13          NaN      NaN

merge works because it doesn't have this restriction:

In [176]:

df_a.merge(df_b, on='mukey', how='left')
Out[176]:
     mukey  DI  PI  niccdcd
0   100000  35  14      NaN
1  1000005  44  14      NaN
2  1000006  44  14      NaN
3  1000007  43  13      NaN
4  1000008  43  13      NaN

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...