Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I want to match feature points in stereo images. I've already found and extracted the feature points with different algorithms and now I need a good matching. In this case I'm using the FAST algorithms for detection and extraction and the BruteForceMatcher for matching the feature points.

The matching code:

vector< vector<DMatch> > matches;
//using either FLANN or BruteForce
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(algorithmName);
matcher->knnMatch( descriptors_1, descriptors_2, matches, 1 );

//just some temporarily code to have the right data structure
vector< DMatch > good_matches2;
good_matches2.reserve(matches.size());  
for (size_t i = 0; i < matches.size(); ++i)
{ 
    good_matches2.push_back(matches[i][0]);     
}

Because there are a lot of false matches I caluclated the min and max distance and remove all matches that are too bad:

//calculation of max and min distances between keypoints
double max_dist = 0; double min_dist = 100;
for( int i = 0; i < descriptors_1.rows; i++ )
{
    double dist = good_matches2[i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
}

//find the "good" matches
vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ )
{
    if( good_matches2[i].distance <= 5*min_dist )
    {
        good_matches.push_back( good_matches2[i]); 
    }
}

The problem is, that I either get a lot of false matches or only a few right ones (see the images below).

many matches with bad results
(source: codemax.de)

only a few good matches
(source: codemax.de)

I think it's not a problem of programming but more a matching thing. As far as I understood the BruteForceMatcher only regards the visual distance of feature points (which is stored in the FeatureExtractor), not the local distance (x&y position), which is in my case important, too. Has anybody any experiences with this problem or a good idea to improve the matching results?

EDIT

I changed the code, that it gives me the 50 best matches. After this I go through the first match to check, whether it's in a specified area. If it's not, I take the next match until I have found a match inside the given area.

vector< vector<DMatch> > matches;
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(algorithmName);
matcher->knnMatch( descriptors_1, descriptors_2, matches, 50 );

//look if the match is inside a defined area of the image
double tresholdDist = 0.25 * sqrt(double(leftImageGrey.size().height*leftImageGrey.size().height + leftImageGrey.size().width*leftImageGrey.size().width));

vector< DMatch > good_matches2;
good_matches2.reserve(matches.size());  
for (size_t i = 0; i < matches.size(); ++i)
{ 
    for (int j = 0; j < matches[i].size(); j++)
    {
    //calculate local distance for each possible match
    Point2f from = keypoints_1[matches[i][j].queryIdx].pt;
    Point2f to = keypoints_2[matches[i][j].trainIdx].pt;        
    double dist = sqrt((from.x - to.x) * (from.x - to.x) + (from.y - to.y) * (from.y - to.y));
    //save as best match if local distance is in specified area
    if (dist < tresholdDist)
    {
        good_matches2.push_back(matches[i][j]);
        j = matches[i].size();
    }
}

I think I don't get more matches, but with this I'm able to remove more false matches:

less but better features
(source: codemax.de)

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
284 views
Welcome To Ask or Share your Answers For Others

1 Answer

An alternate method of determining high-quality feature matches is the ratio test proposed by David Lowe in his paper on SIFT (page 20 for an explanation). This test rejects poor matches by computing the ratio between the best and second-best match. If the ratio is below some threshold, the match is discarded as being low-quality.

std::vector<std::vector<cv::DMatch>> matches;
cv::BFMatcher matcher;
matcher.knnMatch(descriptors_1, descriptors_2, matches, 2);  // Find two nearest matches
vector<cv::DMatch> good_matches;
for (int i = 0; i < matches.size(); ++i)
{
    const float ratio = 0.8; // As in Lowe's paper; can be tuned
    if (matches[i][0].distance < ratio * matches[i][1].distance)
    {
        good_matches.push_back(matches[i][0]);
    }
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...