Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

I want to perform a set of tests in my code that are similar but change only depending on a parameter.

I could write this using a switch statement:

bool doTest(EnumSensorFamily family, const StructSensorProposal& proposed)
{
  switch (family)
  {
  case FAM1:
    return (ExpectedFam1 == proposed.Fam1SensorId);
    break;
  case FAM2:
    return (ExpectedFam2 == proposed.Fam2SensorId);
    break;
  case FAM3:
    return (ExpectedFam3 == proposed.Fam3SensorId);
    break;
  default:
    ERROR ("Unexpected family");
    return false;
  }
}

I was thinking of doing this with template specialisations

template <EnumSensorFamily family>
bool doTest(const StructSensorProposal& proposed);

template<>
bool doTest<FAM1> (const StructSensorProposal& proposed)
{
  return (ExpectedFam1 == proposed.Fam1SensorId);
}

template<>
bool doTest<FAM2> (const StructSensorProposal& proposed)
{
  return (ExpectedFam2 == proposed.Fam2SensorId);
}

template<>
bool doTest<FAM3> (const StructSensorProposal& proposed)
{
  return (ExpectedFam3 == proposed.Fam3SensorId);
}

Is there any benefit of doing this apart from avoiding a switch statement containing near identical cases?

Ideally I would like to be able to write single method to reduce the maintenance overhead.

thanks

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
154 views
Welcome To Ask or Share your Answers For Others

1 Answer

Building off Andrew's answer...

Note that the EnumSensorFamily family must be known at compile time. If it is not known until run time, then you'll have to write a switch to choose the template, putting you back where you started.

Another way to do this is with the Traits pattern:

template <EnumSensorFamily family>
struct SensorTraits;

template <>
struct SensorTraits<FAM1>
{
    const EnumSensorFamily kFamilyID = ExpectedFam1;
};

template <>
struct SensorTraits<FAM2>
{
    const EnumSensorFamily kFamilyID = ExpectedFam2;
};

template <>
struct SensorTraits<FAM3>
{
    const EnumSensorFamily kFamilyID = ExpectedFam3;
};

template <EnumSensorFamily family>
bool doTest(const StructSensorProposal& proposed)
{
  return (SensorTraits<family>::kFamilyID == proposed.Fam1SensorId);
}

If you try to use doTest with a sensor family that lacks a traits specialization, you get a compile error. Also note that you never instantiate a traits object, you just use its definitions.

This lets you reuse constants, typedefs, whatever in several functions. Additionally, adding a new family does not involve combing through all the code looking for every switch statement that cares. All you have to do is create a new SensorTraits specialization.

EDIT: You can make the field dependent on the sensor family with a pointer to member:

template <>
struct SensorTraits<FAM1>
{
    const EnumSensorFamily kFamilyID = ExpectedFam1;
    int StructSensorProposal::*proposalField = &StructSensorProposal::fam1field;
};

// ...

template <EnumSensorFamily family>
int getProposedField(const StructSensorProposal& proposed)
{
    return proposed.*SensorTraits<family>::proposalField;
}

You can also put in, say, a typedef for the sensor's data type:

template <>
struct SensorTraits<FAM1>
{
    const EnumSensorFamily kFamilyID = ExpectedFam1;
    typedef uint16_t data_type;
    data_type StructSensorProposal::*proposalField = &StructSensorProposal::fam1field;
};

// ...

template <EnumSensorFamily family>
SensorTraits<family>::data_type getProposedField(const StructSensorProposal& proposed)
{
    return proposed.*SensorTraits<family>::proposalField;
}

I haven't tested these; you might need a const or static in there.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...