Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
menu search
person
Welcome To Ask or Share your Answers For Others

Categories

This question originates from the comment section in this thread, and has also got an answer there. However, I think it is too important to be left in the comment section only. So I made this Q&A for it.

Placement new can be used to initialize objects at allocated storage, e.g.,

using vec_t = std::vector<int>;
auto p = (vec_t*)operator new(sizeof(vec_t));
new(p) vec_t{1, 2, 3}; // initialize a vec_t at p

According to cppref,

Placement new

If placement_params are provided, they are passed to the allocation function as additional arguments. Such allocation functions are known as "placement new", after the standard allocation function void* operator new(std::size_t, void*), which simply returns its second argument unchanged. This is used to construct objects in allocated storage [...]

That means new(p) vec_t{1, 2, 3} simply returns p, and p = new(p) vec_t{1, 2, 3} looks redundant. Is it really OK to ignore the return value?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
887 views
Welcome To Ask or Share your Answers For Others

1 Answer

Ignoring the return value is not OK both pedantically and practically.

From a pedantic point of view

For p = new(p) T{...}, p qualifies as a pointer to an object created by a new-expression, which does not hold for new(p) T{...}, despite the fact that the value is the same. In the latter case, it only qualifies as pointer to an allocated storage.

The non-allocating global allocation function returns its argument with no side effect implied, but a new-expression (placement or not) always returns a pointer to the object it creates, even if it happens to use that allocation function.

Per cppref's description about the delete-expression (emphasis mine):

For the first (non-array) form, expression must be a pointer to a object type or a class type contextually implicitly convertible to such pointer, and its value must be either null or pointer to a non-array object created by a new-expression, or a pointer to a base subobject of a non-array object created by a new-expression. If expression is anything else, including if it is a pointer obtained by the array form of new-expression, the behavior is undefined.

Failing to p = new(p) T{...} therefore makes delete p undefined behavior.

From a practical point of view

Technically, without p = new(p) T{...}, p does not point to the newly-initialized T, despite the fact that the value (memory address) is the same. The compiler may therefore assume that p still refers to the T that was there before the placement new. Consider the code

p = new(p) T{...} // (1)
...
new(p) T{...} // (2)

Even after (2), the compiler may assume that p still refers to the old value initialized at (1), and make incorrect optimizations thereby. For example, if T had a const member, the compiler might cache its value at (1) and still use it even after (2).

p = new(p) T{...} effectively prohibits this assumption. Another way is to use std::launder(), but it is easier and cleaner to just assign the return value of placement new back to p.

Something you may do to avoid the pitfall

template <typename T, typename... Us>
void init(T*& p, Us&&... us) {
  p = new(p) T(std::forward<Us>(us)...);
}

template <typename T, typename... Us>
void list_init(T*& p, Us&&... us) {
  p = new(p) T{std::forward<Us>(us)...};
}

These function templates always set the pointer internally. With std::is_aggregate available since C++17, the solution can be improved by automatically choosing between () and {} syntax based on whether T is an aggregate type.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
thumb_up_alt 0 like thumb_down_alt 0 dislike
Welcome to ShenZhenJia Knowledge Sharing Community for programmer and developer-Open, Learning and Share
...